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Wire electrical discharge machining (WEDM) of oil hardening die 
steel materials is a complicated machining process. Hence, to 
determine the best set of process parameters is an important step in 
the wire EDM process. In the present work, multi-response 
optimization of machining parameters was done by using a technique 
called desirability function analysis coupled with the dimensional 
analysis(DA) approach. The experimentations were carried out as 
per Taguchi’s L27 orthogonal array for (Oil Hardening Non-
Shrinking Die Steel) the OHNS die steel material. Parameters of the 
WEDM process, such as pulse on time, pulse off time, input current, 
wire feed rate, and the servo voltage, were optimized by a multi-
response optimization technique to optimize the responses such as 
material removal rate and surface roughness. Based on desirability 
analysis, the set of most favorable levels of parameters has been 
identified. The significant contribution of parameters is determined 
by dimensional analysis. From the experimental results, it has been 
observed that the DA approach is in good agreement with the 
measured responses. The correlation up to  99% has been achieved 
between the developed model and the measured responses by using 
dimensional analysis approach. Thus, the presented methodology can 
be used in the future for the critical analysis of any engineering 
process. 

  © 2019 IUST Publication, IJIEPR. Vol. 30, No. 1, All Rights Reserved 
 

1. Introduction1 
Wire-electrical discharge machining (WEDM) is 
a non-traditional machining process that is used 
to cut the materials with an electrode that follows 
a definite pathway to shape complex and 
complicated products. M.R.Phate & 
V.H.Tatwawadi [1,2] used an approach of 
dimensional analysis to formulate the model for 
the dry machining of ferrous and nonferrous 
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materials. Ilhan Asilturk and Mehmet Cunkas [3] 
used multiple regressions and the artificial neural 
network for the turning process. They analyzed 
the impact of cutting speed, feed, and depth of 
cut on surface roughness. Gaitinde et al. [4] used 
an artificial neural network technique to analyze 
the performance of conventional and wiper 
ceramic inserts in hard turning. An acceptable 
and efficient result was obtained by these 
techniques. I.M.Jamadar and D.P.Vakharia [5]  
used a DA approach and ANN based on  back-
propagation neural network (BPNN) to analyze 
the vibration responses due to artificially spalled 

DOI: 10.22068/ijiepr.30.1.11 
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bearing components to quantify the level of 
structural damages to these components. 
Acceptable results were obtained by the DA 
method. Ravindranadh Bobbili et al. [6] 
evaluated the significance machine variables such 
as pulse-on time, flushing pressure, input power, 
thermal diffusivity, and latent heat of 
vaporization on responses such as material 
removal rate and the surface roughness. 
Buckingham’s pi theorem was used for the model 
formulation of the material such as aluminum 
alloy 7017 and rolled homogeneous armor. 
Murahari Kolli and Adepu Kumar [7] used the 
Taguchi method to analyze the impact of 
dielectric fluid on the discharge of WEDM of 
titanium alloy. The various responses considered 
are Material Removal Rate (MRR), Surface 
Roughness (SR), Tool wear rate (TWR), and 
Recast Layer Thickness (RLT). Pujari Srinivasa 
Rao et al. [8] investigated the residual stresses 
developed in the machining of Aluminium alloy 
by Taguchi method.  
J.R.Mevada (2013) [9] investigated two 
responses, i.e., MRR and Surface roughness. This 
investigation was carried out to find the best 
optimal level for a higher material removal rate at 
lower surface roughness for Inconel 600 material. 
The experiments were conducted by the varying 
pulse on times, pulse off times, and peak 
currents. Yu Huang et al. [10] studied the effect 
of various process parameters on surface 
roughness, material removal rate, and average 
gap voltage in the WEDM of high hardness tool 
steel YG15. Regression models were used to 
obtain the optimum cutting parameter 
combination. Pulse-on time, cutting feed rate, and 
water pressure were more important than other 
factors in MRR. Tzeng et al.  [12] proposed a 
valuable process parameter optimization 
approach that integrates Taguchi’s parameter 
design method, response surface methodology 
(RSM), a back-propagation neural network 
(BPNN), and a genetic algorithm (GA) on 
engineering optimization concepts to determine 
the best parameter settings of the WEDM process 
in consideration of multiple responses. Material 
removal rate and work-piece surface finish on 
process parameters during the manufacturing of 
pure tungsten profiles by wire electrical discharge 
machining (WEDM).  Mangesh et al. [14] used 
the approach based on the dimensional analysis 
for the turning of ferrous and nonferrous 
materials. Al 6063, brass, Steel EN1A, EN8, and 
SS 304 were used for the experimentation. 
Surface roughness model was developed for the 

ferrous and nonferrous materials by using the DA 
approach. A random plan of experimentation was 
used for the data collection. Good agreement 
between experimental and calculated surface 
roughnesses was observed in the presented work. 
R.S.Kadu et al. [15] used the dimensional 
analysis approach for analyzing the performance 
of boring machining operation. The factors such 
as cutting speed, depth of cut, insert material, and 
cooling environment along with the length and 
diameter of the tool were considered as 
influencing parameters. The material used for the 
experimentation was cast iron in boring 
machining operation. The principle of max-min 
was used for optimizing the performance 
parameters such as surface roughness and the 
cutting time.  Kumar et al. [16]  used Tungsten 
powder during the EDM of Die material. He 
investigated the performance of EDM process 
parameters for the optimized use. Sanjeev et al. 
[17] used the EDM process for the surface 
modification using tungsten powder-mixed 
dielectric fluid. OHNS die steel was used for the 
experimentation. Mangesh Phate and Pratik 
Gaikwad [20] used the biodynamic model 
approach for analyzing the biodynamic 
responses. There are so many modeling 
techniques used by the worldwide authors; 
however, the most suitable dimensional analysis 
(DA) technique is implemented effectively in the 
presented work. Jha et al. [20] used the Taguchi 
method, and Vaysi et al. [22] used the fuzzy 
FMEA tool for the optimization of the process. 
 

2. Material and Method 
2-1. Material  
The experiments were conducted using 
EZEECUT NXG –Wire EDM with 320 X 
400mm axis travel and 360 X 600 maximum 
work piece diameters. Brass wire with wire 
diameters of 0.2 mm was used with an accuracy 
of 0.1 mm. The Electric Discharge Machine 
typically consists of a machine, a power unit, and 
a spark unit. Wire moves through the work piece 
from upper and lower wire paths. Oil Hardening 
Non-Shrinking Die Steel (OHNS) is a chemical 
composition and is shown in Table 1. A work 
piece with dimensions of 200 X 75 X 10 mm was 
used as a work piece material while brass wire 
was used as the tool electrode materials. A 
picture of experimental setup is shown in Figure 
1. The various inputs and performance 
parameters are shown in Table 2.  
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2-2. Formulation of governing equation using 
dimensional analysis (DA) approach 

This study was carried out for the performance 
analysis of the WEDM of OHNS steel. The 
various performance indicators, such as surface 
roughness, were measured by the MITUTOYO 
SJ-201P roughness tester. This is the most 
important parameter in the WEDM process. The 
second and the most important wire EDM 
machining characteristic,  i.e.,  material removal 
rate (MRR) calculated using the material 
removed w.r.t the span of actual machining.   
 

Tab. 1. Chemical composition of work piece 
material 

Elems
. C Mn Cr Si P W V 

Weigh
t (%) 

0.8
5-
0.9
5 

1.0   
-   

1.3 

0.4    
-   

0.6 

0.2   
-   

0.4 

0.03 
max 

0.4  
-   

0.6 

0.2
0 

ma
x 

 
The main aim of this segment is to structure a 
generalized dimension model for various 
responses mentioned above for the wire EDM of 
OHNS machining [11,13]. Dimensional analysis 
(DA) is a very easy and strong technique that can 
be used in the model formulation for any 
complex engineering system. The DA approach 
is used for the system where the number of 
variables is huge, and correlating such high 
number of variables is a challenging task. 
For the purpose of DA-based model formulation, 
let us assume that there is a relationship between 
the response variables, i.e., dependent variables, 
and the governing parameters, i.e., independent 
variables. [11,18] In other words, let  N be the 
total number of variables  ( such as Pulse on time, 
pulse off time, wire feed rate, servo voltage, input 
current, density of material, wire tension, 
dielectric fluid flow, coefficient of thermal 
expansion, surface roughness, and material 
removal rate) that can be assured as a relation 
between ( N-N1) dimensionless groups ( pi terms 
) of variables, where N1 is the number of basic 
dimensions, i.e., M, L, and T; hence,  N1 =3,    
[13,19,23-25]. The wire EDM parameters, such 
as pulse-on time (PON), work piece density (ρ), 
and the servo voltage (V), were selected as 
repeating parameters. The other parameters were 
selected to establish the DA model. The primary 
dimensions of selected parameters are given in 
Table 2.  

Suppose that the following function f designates 
the dependency of wire EDM process, i.e., 
response variable with input factors as Eq. (1,2), 
 
Response variables = f (Independent variables)  
                                                                           (1) 
 
In Eq. 1, f represents the relationship between 
dependent and the  independent variables,  i.e.,   
 
Response	variable	 =
f	൫Iଵ	,Iଶ, Iଷ, Iସ, …………………… I൯                  (2) 
 
where I1 ,I2, I3,I4…………………………….IN  are the 
number of input parameters that can influence the 
WEDM process. 

 
Tab. 2. The primary dimensions of the 

parameters in WEDM 
S.N Parameters Symbols Primary 

dimensions 
Nature 

1 Pulse on time  PON M0 L0 T1 Independent
2 Pulse off time  POFF M0 L0 T1 Independent
3 Wire feed rate WFR M0 L1 T-1  
4 Input current  CR M0 L0 T0 Independent
5 Servo voltage  SV M1 L2 T-3  
6 Work piece 

 density  
ρ M1 L-3 T0 Independent

7 Wire tension  WT M1 L1 T-2 Independent
8 Dielectric fluid 

pressure 
DQ M0 L3 T-1 Independent

9 Coefficient of 
thermal  
expansion  

α M0 L0 T0 Independent

10 Surface roughness RA M0 L1 T0 Dependent  
11 Material removal 

rate  
MRR M0 L3 T-1 Dependent 

 
Eq.(2) can be written as Eq. (3) 
 
f	(PON, POFF,WFR, CR, SV, ρ,WT, DQ, , RA,KRF,MRR) = 0	    (3) 
 
According to theories of engineering 
experimentation by H. Schenck Jr. [11]. Most 
systems require at least three primaries; however, 
the investigator is free to choose any reasonable 
set he wishes, the only requirement being that his 
variables must be expressible in his system. 
There is really nothing base or fundamental about 
the primary dimensions. In this research, all the 
variables are expressed in mass (M), length (L), 
and time (T); hence, M, L, & T are chosen as 
primary dimensions. The process variables, their 
symbols, and dimensions are listed in Table 2. 
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The basic equation, which correlates all input 
parameters with the response variables, is as 
follows [11,14].   
The dimensional matrix of repeating variables 
can be written as a 3 x 3 square matrix [11] as 
follows: (Because there are only three primary 
dimensions) 
 

[P] 			= 									 
		P11 P12		 P13
		P21 P22		 P23
		P31 P32		 P33

			൩				
M
L
T

 

 
All the variables other than the repeating 
variables can be written as a dimensional matrix 
of non-repeating variables. This matrix is of 3 x 
N order, where N is the number of non- repeating 
variables.  
 
	[Q] 			

= 									 
			Q11 Q12		 …………… . . Q1N
			Q21 Q22		 …………… . . Q2N
			Q31 Q32		 …………… . . Q3N

			൩ 				
M
L
T

 

 
According to the matrix method of dimensional 
analysis [11], the Nth dimensionless group can 
be formulated as Eq. (4) 
 

୕ొ
భభొమమొయయొ

= MLT = (П)                  (4) 
 
Thus, the basic pi terms can be formulated for all 
non-repeating variables by using Eq. (4). The 
following pi terms can be formulated as follows: 
 
πଵ = (PON)ୟ	(ρ)ୠ	(SV)ୡ	POFF    
[Pi term related to the pulse off time POFF]   (4a) 
 
πଶ = (PON)ୟ	(Sρ)ୠ	(SV)ୡ	CR     
[Pi term related to the input current CR]         (4b) 
 
πଷ = (PON)ୟ	(ρ)ୠ	(SV)ୡ	WFR     
[Pi term related to the wire feed rate WFR]    (4c) 
 
πସ = (PON)ୟ	(ρ)ୠ	(SV)ୡ	WT  
 [Pi term related to the wire tension WT]        (4e) 
 
πହ = (PON)ୟ	(ρ)ୠ	(SV)ୡ	DQ  
[Pi term related to dielectric fluid flow DQ]    (4f) 
 
π = (PON)ୟ	(ρ)ୠ	(SV)ୡ	α   
[Pi term related to Coefficient of thermal 
expansion α]                                                    (4g) 
 
π = (PON)ୟ	(ρ)ୠ	(SV)ୡ	RA  
[Pi term related to surface roughness Ra]       (4h) 

π଼ = (PON)ୟ	(ρ)ୠ	(SV)ୡ	MRR   
[Pi term related to the material removal rate]  (4i) 
 
П1, П2 ,П3 , П4, П5 , and П6  can be expressed as a 
function of П7, П8, and П9  as in Eqs. 5-7. 
 
	π = f(πଵ, πଶ,πଷ, πସ, πହ, π)                            (5) 
	π଼ = f(πଵ, πଶ,πଷ, πସ, πହ, π)                            (6) 
	πଽ = f(πଵ, πଶ,πଷ, πସ, πହ, π)                            (7) 
 
By comparing the indices of basic pi terms on 
both sides, the following expressions are derived. 
Equation (4) is deduced as in (6-8). 
In the above Eqs. (5a-5j), unknowns can be 
calculated by representing them as a system of 
linear algebraic equations as in Eqs.(6-8)[5], 
 
Pଵଵ	aଵ୬ + Pଵଶ	aଶ୬	 + Pଵଷ	aଷ୬	 = Qଵ୬	                 (6) 
Pଶଵ	aଵ୬ + Pଶଶ	aଶ୬	 + Paଷ୬	 = Qଶ୬		                   (7) 
Pଷଵ	aଵ୬ + Pଷଶ	aଶ୬	 + Pଷଷ	aଷ୬	 = Qଷ୬	                 (8) 
 
In matrix form, this system can be rewritten as 
in Eq. (9): 
 

					
		P11 P12		 P13
		P21 P22		 P23
		P31 P32		 P33

			൩ 	
aଵ୬
aଶ୬	
aଷ୬	

൩ = 
Qଵ୬
Qଶ୬	
	Qଷ୬	

൩      (9) 

 
It can be written in the matrix form as in Eq. (10): 
 
[P] [A] = [Q]                                                   (10) 
 
The solution of Eq. (10) can be obtain as in Eq. 
(11): 
 
[A] = [P]-1 [Q]                                                  (11) 
 
By repeating the procedure for all non-repeating 
variables, i.e. Nine, a set of basic dimensionless 
terms is obtained and listed in Table 2 [13]. The 
number of pi terms, i.e., dimensionless groups, is 
equal to that of non-repeating variables, i.e., nine 
pi terms can be formulated.  
Hence, the relationship in Eq. (12) can be 
formulated as follows: 
 
πୈ = f൫πଵ, πଶ, πଷ,πସ, πହ,π൯ 
i.e.,   πୈ = φ	 × πଵଵ × πଶଵ × πଷେଵ × πସୈଵ ×
πହଵ × πଵ                                                     (12) 
 
where ПD is the pi term related to the response 
variables.  Eq. (13) represents the governing 
equation that is used as a DA model for 
predicting the various responses of WEDM 
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process. The response given by Eq. (13) depends 
on six basic pi terms instead of all of the original 
9 variables involved in Eq. (4). Experimental data 
are assigned to the number of pi terms. For the 
solution of Eq. (13), let us take log on both sides 
of Eq. (13). We obtain  
 
ln	(πୈ) = ln(φ) + A1 + B1 ∗ ln(πଶ) + C1 ∗
ln(πଷ) + D1 ∗ ln(πସ) + E1∗ ln(πହ) +
F1 ∗ ln(π)                                                       (13) 
 
Simplified by assuming  
 
Z = ln	(πD) ,Xଵ = ln	(πଵ) ,Xଶ = ln	(πଶ) ,Xଷ =
ln	(πଷ) , Xସ = ln	(πସ)   
			Xହ = ln	(πହ)  ,	X = ln	(π) &			K = ln	(φ)  
 
Hence, the linear form of Eq. (13) can be written 
as Eq. (14) 
 
Z = K + A1 ∗ Xଵ + B1 ∗ Xଶ + C1 ∗ Xଷ + D1 ∗
Xସ + E1 ∗ Xହ + F1 ∗ X                                  (14) 
 
If ‘n’ experiments are to be executed, then the 
response of any ‘mth’ experiment can be obtained 
as follows: 
ܼ	 = ܭ + 1ܣ ∗ ܺଵ 1ܤ+ ∗ ܺଶ + 1ܥ ∗ ܺଷ

+ 1ܦ ∗ ܺସ + 1ܧ ∗ ܺହ + 1ܨ
∗ ܺ 

 
Now, we can sum up the results of all ‘n’ 
experiments as in Eq. (15) 
 

 Z୫ 	= n ∗ K + A1 ∗
୬

୫ୀଵ

 X୫ଵ + 	B1
୬

୫ୀଵ

∗  X୫ଶ

୬

୫ୀଵ

+ C1 ∗  X୫ଷ

୬

୫ୀଵ

+ D1

∗  X୫ସ

୬

୫ୀଵ

	 + 										E1 ∗  X୫ହ

୬

୫ୀଵ

+ F1 ∗  X୫

୬

୫ୀଵ

		 

(15) 
 
2-3. Experimental setup :  
The experiments were conducted using 
EZEECUT NXG –WEDM with 320 X 400mm 
axis travel and 360 X 600 maximum work piece 
diameters. Brass wire with wire diameters from 
0.2 to 0.25mm was used with an accuracy of 0.1 
mm. The experimental setup of the WEDM 
process is shown in Figure 2. The various 

parameters are correlated as in the input/output 
process and are shown in Fig. 3. The various 
input factors and their selected levels are 
presented in Table 3. Twenty-seven different 
experiments were conducted at random according 
to Box-Behnken design with 5 factors. The pulse 
on time, pulse off time, wire feed rate, servo 
voltage, and the input current are considered as 
design variables in order to determine the 
optimum value of the material removal rate and 
surface roughness in the WEDM process on 
OHNS steel. The experiments were conducted by 
Taguchi’s L27 array. Three replicates were used, 
and the average value of the response variables is 
noted in Annexure 1. The DA models were 
formulated in the MATLAB. The methodology 
adopted for the present work is shown in Fig. 1.   
Fig. 3 shows the methodology adopted for the 
dimensional analysis. The data were collected by 
using L27 plan of experimentation. The 
dimensional model was formulated by Matlab.  

 
Tab. 3. Various input parameters and their 

selected levels 
S.N Parameters Symbols Levels 

Low  Medium High
1 Pulse on time  PON             

(Micro-sec) 
25 35 45 

2 Pulse off time POFF         
(Micro-sec) 

4 6 8 

3 Wire feed rate WFR               
(m/min) 

2 3 4 

4 Input current  CR                   
(Amp) 

40 70 99 

5 Servo Voltage SV                     
(Volt) 

90 100 110 

 
The level of various process parameters is 
presented in Table 2, while the experimental 
results are shown in Table 3.  

RA

= Kଵ
PON

య
ఱ ∗ SV

భ
ఱ

ρ
భ
ఱ

	൬
POFF
PON

൰
ଵ
(CR)ଵ 		ቌ

PON
మ
ఱ ∗ ρ

భ
ఱ ∗ WFR

SV
భ
ఱ

ቍ

େଵ

 

								ቆ ρ
య
ఱ∗ୈ୕


ర
ఱ∗ୗ

య
ఱ
ቇ
ୈଵ

ቆ 


మ
ఱ∗ୗ

ర
ఱ∗ρ

భ
ఱ
ቇ
ଵ

∝ଵ               (16) 

MRR

= Kଷ
PON

ర
ఱ ∗ SV

య
ఱ

ρ
య
ఱ

	൬
POFF
PON

൰
ଶ
(CR)ଶ 		ቌ

PON
మ
ఱ ∗ ρ

భ
ఱ ∗ WFR

SV
భ
ఱ

ቍ

େଶ

 

ቆ ρ
య
ఱ∗ୈ୕


ర
ఱ∗ୗ

య
ఱ
ቇ
ୈଶ

ቆ 


మ
ఱ∗ୗ

ర
ఱ∗ρ

భ
ఱ
ቇ
ଶ

∝ଶ               (17) 
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Eqs. (16,17) represent dimensional equations for 
surface roughness and MRR, respectively, where 
K 1, K 2, and K 3are the exponential constants for 
RA and MRR models. A1, B1, C1,D1, E1 & F1 are 
the power indices for the surface roughness 
model. A2, B2, C2,D2, E2 & F2 are the power indices 
for the MRR model. The values of all the above 
constants are given in Table 4. The indices can be 
calculated by using Matlab [20].  

 
3. Multi-Response Optimization Using 

Desirability Function 
3-1. Desirability function approach (DFA) :  
The desirability function approach (DFA) is a 
very efficient approach that assigns a "score" to a 
set of output functions or response variables and 
selects the best set of input parameters that 
maximizes the score. It is based on the thought 
that the "superiority" of any product of the 
process that has several response characteristics. 
The method finds the operating situation that 
provides the "most attractive or favorable” 
outputs. The DFA consists of the following steps:  
Step 1: Calculate the individual desirability index 
(di) for the corresponding responses using the 
formula proposed by the Derringer and Suich 
[1980]. There are three forms of the desirability 
functions according to the response 
characteristics. The desirability function for 
"Nominal or target  is best": If a response is of 
the "nominal is best" kind, then its individual 
desirability function is as follows: 
 

Tab. 4. Constants and indices for the various 
DA models 

  S.N Constant/ Indices    RA Model MRR Model 
1 Exponential 

constant(K) 0.0011853 0.00026 

2 Power indices for 
PFF(A) 0.0499 0.1272 

3 Power indices for the 
CR(B) 0.0523 0.1907 

4 Power indices for the 
WFR (C) -0.0502 0.1016 

5 Power indices for the 
DQ (D) 1.051 0.6303 

6 Power indices for the 
WT (E) -0.1762 0.1741 

7 Power indices for the  
α (F) 3.3011 3.7518 

8 Mean absolute 
percentage error 
(MAPE) 

0.98944 0.95365 

9 Mean absolute 
percentage error 
(MAPE) 

0.07314 0.07395 

10 Mean absolute 
percentage error 
(MAPE) 

0.89951 2.23111 

 

ܦ ܼ =

⎩
⎪
⎨

⎪
⎧
0,																																				if	Z୧	(x) < LO୧
ቀ	(୶)ି
ୖି

ቁ
ୗ
							if	LO୧ < Z୧	(x) < TR୧

ቀ	(୶)ି
ୖି

ቁ

							if	TR୧ < Y୧	(x) < UP୧

0,																																				if	Z୧	(x) < UP୧

	   (18) 

 
Exponents S  and T determine how important it is 
to hit the target value. Desirability function for 
maximizing a response or larger is best if a 
response is to be maximized instead. The 
individual desirability is defined as follows: 
 

Z୧ܦ =

⎩
⎪
⎨

⎪
⎧ 0,																																				if	Z୧	(x) < LO୧

ቆ
Z୧	(x) − LO୧
TR୧ − LO୧

ቇ
ୗ

							if	LO୧ < Z୧	(x) < TR୧

0,																																				if	Z୧	(x) > TR୧

	 

                                                                         (19) 
 
With TRi in this case interpreted as a large 
enough value for the response, the desirability 
function for minimizing a response or smaller is 
the best. We could use  

 
ܼܦ

=

⎩
⎪
⎨

⎪
⎧ 1,																																				if	Z୧	(x) < TR୧

ቆ
Z୧	(x) − UP୧
TR୧ − UP୧

ቇ
ୗ

							if	TR୧ < Z୧	(x) < UP୧

0,																																				if	Z୧	(x) > UP୧

	 

                                                                         (20) 
 
TRi denotes a small enough value for the 
response.  
In this study, “larger is the better” for material 
removal rate, and “the smaller the better” for the 
surface roughness characteristic is applied to 
determine the individual desirability values for 
Material removal rate and the surface roughness, 
delamination factor, and machining force since 
all responses are to be minimized. 
 
Step 2: For each response variable Zi (x), a 
desirability function Di (Zi) allocates statistics 
between 0 and 1 to the probable values of Zi, with 
Di(Zi) = 0 representing a totally disagreeable 
value of Zi and Di (Zi) = 1 representing a 
completely advantageous or perfect response 
value. The individual desirabilities are then 
united using the geometric mean, producing the 
overall desirability Do as shown in Equation (27). 
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D୭

= ටDଵ୵ଵ × Dଶ୵ଶ × Dଷ୵ଷ ×−− −− −D୵


 
                                                            (21) 

 
where w denotes the weight of an individual 
response variable, while W is the total of weights 
assigned. Let LOi, UPi, and TRi be the lower, 
upper, and target values, respectively, that are 
desired for response Zi, with LOi TRi  UPi. 
Step 3:  Finally, the combination whose overall 
desirability (Do) is highest is selected as an 
optimized parameter.  
 
3-2. Optimization by using DFA:  
Optimal combinations of parameters are 
determined based on the assumed weight of 
surface roughness and the material removal rate, 
respectively. Both surface roughness and the 
material removal rate play a vital and identical 
role in machining performance; hence, it is given 
equal weight. Based on the assumed weight, the 
composite desirability values are also calculated 
and tabulated in Annexure 2. From the above 
analysis, it has been observed that the highest 
value for the composite desirability score is 
0.888996 corresponding to the observation No 
19. Hence, the optimal or the best set of process 
parameters lies at pulse on time 45 micro sec, 
pulse off time 4 micro sec, current 4 amp, wire 
feed rate 70 mm/min, and the voltage 90 volts.  
 

4. Results and Discussion 
In this section, the results obtained from the 
dimensional analysis (DA) are discussed: An 
empirical model for surface roughness [18-20] 
and the material removal rate has been developed 
with process variables of pulse-on time, input 
current, pulse off time, voltage, and other related 
properties of OHNS material. Figs. 4-7 illustrate 
the effect of various input parameters of the 
responses. From Fig. 4, it is observed that the 
minimum surface roughness is obtained when the 
parameter of pulse on time is 35 micro- sec, 
while the maximum material removal rate and the 
kef width can be obtained with the PON being 45 
micro-sec. The minimum surface roughness is 
obtained when the input current (CR)  is 35 amp 
and the maximum  material removal rate and the 
kef width can be obtained with the PON being an 
amp. The minimum surface roughness is obtained 
when the wire feed rate (WFR) is 70 mm/min, 
and the maximum   material removal rate and the 
kef width can be obtained with the wire feed rate 

being 99 mm/min. The minimum surface 
roughness is obtained when the pulse off time is  
6 micro sec with the maximum material removal 
rate. Similarly, the minimum surface roughness is 
obtained when the servo voltage is 100 volt and 
the maximum   material removal rate can be 
obtained with the SV 90 volt. 
The experiments were conducted to observe the 
various performance indicators of WEDM. The 
observations indicated that when pulse on time 
(PON) increases from 25 to 35 micro-secs, 
surface roughness and MRR increase by 13.10% 
and 3.89069%, respectively. A surface roughness 
by 1.867% is notified about an increase in MRR 
by  2.45303 %  when the pulse on time further 
changes from 35 to 45 micro-sec. A reduction in 
surface roughness by 64.503% and MRR by 
83.84 % is notified when pulse off time increases 
from 4 to 6 micro-secs. When pulse off time is 
further increased from 6 micro-secs to 8 micro-
secs, surface roughness and MRR increase by 
4.44548 % and 21.088%, respectively. 
When input current (CR)  is changed from 2 to 3 
amp, surface roughness increases by 2.4286% 
with a reduction in MRR by 3.0117 %. A 
reduction in  MRR by 16.525% with an increase 
in surface roughness by 2.42865 is observed 
when input current (CR)  is changed from 3 to 4 
amp. When wire feed rate (WFR)  is changed 
from 40-70 mm/min, surface roughness increases 
by 2.1719% with a reduction in MRR by 
0.6891%. A reduction in surface roughness by 
8.864 %  with an increase in MRR by 10.4677 %  
is observed. When servo voltage (SV)  is changed 
from 90 to 110 volts, a reduction in surface 
roughness by 5.6087 % and MRR by 2.2133% is 
observed. An increase in surface roughness by 
0.98% and MRR by 4.41128% is observed during 
the experimentation. In analyzing the data, the-
smaller‐the‐better concept of normalization is 
used while surface roughness is considered, since 
these two performance parameters have to be 
minimized. However, the-higher‐the‐better 
concept is used for MRR since this performance 
parameter should be maximized. From Fig. 8, it 
is observed that the average error achieved in 
these models is below 2%. This indicates good 
agreement between the two datasets.    
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Fig. 1. Comparison between measured and DA 

predicted Ra for  WEDM. 

 
Fig. 2. Comparison between measured and DA 

predicted MRR for  WEDM. 
 
Figs. 1 & 2 show that the measured and 
calculated responses based on the DA approach 
are very close and show the good agreement. By 
observing the formulated DA model (Eqs. 24-26), 
the indices of the surface roughness and MRR 
DA model, i.e., Table 3, we can conclude that the 
power indices of the pi term П6   (Pi term related 
to Coefficient of thermal expansion)  &  П4 (pi 
term related to the dielectric fluid flow) of the 
DA model (Ra)   are very high. Hence, the 
coefficient of thermal expansion and the 
dielectric fluid flow are the most influencing 
parameters that can affect directly surface 
roughness and the MRR in the WEDM of OHNS 
steel. Similarly, the parameters such as pulse off 
time, wire feed rate, and the input current have 
moderate effect on the response variables. The 
minimum surface roughness is obtained for the 3-

2-1-3-1 level of the input parameters. For the 
maximum surface roughness, MRR can be 
obtained for the 3-3-2-1-3 levels of the input 
parameters.   
After formulating the model successfully to 
predict Ra and MRR in WEDM of OHNS 
materials by DA, the formulated models were 
compared with the experimental or measured 
data. The results obtained were compared by 
some statistical tools such as root mean square 
error (RMSE), mean absolute percentage error 
(MAPE), and the correlation coefficient (R2), as 
given by the following Eq. (22) [1]. 
 

RMSE = ඨ∑ (Y୧ − Yେ୧)ଶ୬
୧ୀଵ

N
 

 

MAPE =
∑ ቚଢ଼ିଢ଼ి

ଢ଼୧
ቚ୬

୧ୀଵ

N
X100 

 
 

ࡾ =  −	ቆ
∑ (Y୧ − Yେ୧)ଶ୬
୧ୀଵ
∑ (Yେ୧)ଶ୬
୧ୀଵ

ቇ 

                                                                         (22) 
 
where ‘N’ is the number of runs or data set. Yi is 
the experimental result, and Yci is the calculated 
results of the various models. The correlation 
(R2) for the surface roughness DA model and the 
MRR DA model is 0.98944 and 0.95365, 
respectively. The root mean square (RMSE) of 
the error for the surface roughness DA model and 
the MRR DA model is 0.07314 and 0.07395, 
respectively.  The mean absolute percentage error 
(MAPE) of the surface roughness DA model is 
0.89951, and that of the MRR DA model is 
2.23111. Figs. 9-11 show the comparison 
between the experimental and predicted results 
for the various responses.  
 

5. Conclusion 
In this study, the application of Buckingham’s pi 
theorem (Dimensional analysis) for formulating 
the model for the surface roughness and the 
material removal rate of OHNS die steel in 
WEDM  was studied. The dependence of the 
response and the governing variables were 
discussed. The conclusions are presented as 
follows: 
 Empirical models were developed using 

Buckingham pi theorem for the performance 
variables such as Ra and MRR  to establish 
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the relationship between the variables such as 
pulse off time, pulse on time, wire feed rate, 
servo voltage, input current, work piece  
density, and the coefficient of thermal 
expansion. Results obtained by the 
formulated DA model are very close to the 
experiment results. 

  The rise of pulse-on time from 25 micro-secs 
to 45 micro-secs causes deterioration in 
surface roughness and improvement in the 
MRR. 

 Thus, the dimensionless pi terms have 
provided the the idea of the collective effect 
of the parameters related to that pi term. The 
DA approach helps the end user handle the 
huge number of variables involved in the 
analysis. The DA models developed for 
different combinations of parameters can be 
successfully utilized for the system analysis. 
Overall, the good agreement between the 

theoretical model formulations based on the 
dimensional analysis theory and the experimental 
data powerfully supported the validation of the 
theoretical formulations. Finally, it is of 
significance to note here that the dimensional 
analysis tool applied in the current study is given 
as a general procedure of human energy analysis 
in which the formulation of non-dimensional 
numbers, i.e., pi terms, will also facilitate the 
correlation of the various parameters. The 
presented method of dimensional analysis is a 
very easy and efficient technique to formulate the 
model for any engineering system. Thus, DA 
approach can be used efficiently in other streams 
or applications in engineering.  
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Fig. 3. Methodology adopted for WEDM analysis using the DA approach. 
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Annextures 1. Observation table   

RUN 
WEDM Variables WEDM 

Responses 
PON POFF CR WFR VT RA MRR 

1 1 1 1 1 1 1.414 1.8285 
2 1 1 1 1 2 1.200 2.4045 
3 1 1 1 1 3 1.104 1.1455 
4 1 2 2 2 1 1.411 1.9875 
5 1 2 2 2 2 1.321 1.2535 
6 1 2 2 2 3 1.578 1.6295 
7 1 3 3 3 1 1.294 1.6535 
8 1 3 3 3 2 1.001 1.6355 
9 1 3 3 3 3 0.923 1.7925 

10 2 1 2 3 1 0.825 2.0755 
11 2 1 2 3 2 0.986 2.0305 
12 2 1 2 3 3 1.023 1.5945 
13 2 2 3 1 1 1.125 2.1295 
14 2 2 3 1 2 1.352 1.1635 
15 2 2 3 1 3 1.731 1.8855 
16 2 3 1 2 1 0.895 1.5905 
17 2 3 1 2 2 1.712 1.8355 
18 2 3 1 2 3 0.958 2.1645 
19 3 1 3 2 1 0.865 2.5545 
20 3 1 3 2 2 1.403 2.4385 
21 3 1 3 2 3 1.586 1.2365 
22 3 2 1 3 1 1.239 2.0235 
23 3 2 1 3 2 1.632 2.6605 
24 3 2 1 3 3 1.736 1.2365 
25 3 3 2 1 1 1.199 2.6905 
26 3 3 2 1 2 1.512 1.3255 
27 3 3 2 1 3 1.892 2.8615 

 

Annexture 2. Overall desirability calculation.    

RUN 
WEDM Variables WEDM Responses Individual 

Desiribility 
Composite 
Desirability 

PON POFF CR WFR VT RA MRR RA MRR 
1 1 1 1 1 1 1.414 1.8285 0.448 0.398019 0.422263408 
2 1 1 1 1 2 1.200 2.4045 0.649 0.733683 0.689802971 
3 1 1 1 1 3 1.104 1.1455 0.739 0 0 
4 1 2 2 2 1 1.411 1.9875 0.451 0.490676 0.470313811 
5 1 2 2 2 2 1.321 1.2535 0.535 0.062937 0.1835224 
6 1 2 2 2 3 1.578 1.6295 0.294 0.282051 0.288102252 
7 1 3 3 3 1 1.294 1.6535 0.56 0.296037 0.407325498 
8 1 3 3 3 2 1.001 1.6355 0.835 0.285548 0.488310475 
9 1 3 3 3 3 0.923 1.7925 0.908 0.37704 0.585158041 

10 2 1 2 3 1 0.825 2.0755 1 0.541958 0.736177996 
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11 2 1 2 3 2 0.986 2.0305 0.849 0.515734 0.661751421 
12 2 1 2 3 3 1.023 1.5945 0.814 0.261655 0.461628068 
13 2 2 3 1 1 1.125 2.1295 0.719 0.573427 0.642028607 
14 2 2 3 1 2 1.352 1.1635 0.506 0.01049 0.072860522 
15 2 2 3 1 3 1.731 1.8855 0.151 0.431235 0.255086777 
16 2 3 1 2 1 0.895 1.5905 0.934 0.259324 0.492251143 
17 2 3 1 2 2 1.712 1.8355 0.169 0.402098 0.260447352 
18 2 3 1 2 3 0.958 2.1645 0.875 0.593823 0.720974125 
19 3 1 3 2 1 0.865 2.5545 0.963 0.821096 0.888996123 
20 3 1 3 2 2 1.403 2.4385 0.458 0.753497 0.587642017 
21 3 1 3 2 3 1.586 1.2365 0.287 0.05303 0.123322 
22 3 2 1 3 1 1.239 2.0235 0.612 0.511655 0.559581048 
23 3 2 1 3 2 1.632 2.6605 0.244 0.882867 0.463822849 
24 3 2 1 3 3 1.736 1.2365 0.146 0.05303 0.088052592 
25 3 3 2 1 1 1.199 2.6905 0.649 0.90035 0.764698094 
26 3 3 2 1 2 1.512 1.3255 0.356 0.104895 0.193280126 
27 3 3 2 1 3 1.892 2.8615 0 1 0 
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